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Abstract In the current investigation, we introduce a generalized modified model of ther-
moviscoelasticity with different fractional orders. Based on the Kelvin–Voigt model and
generalized thermoelasticity theory with multi-phase-lags, the governing system equations
are derived. In limited cases, the proposed model is reduced to several previous models in
the presence and absence of fractional derivatives. The model is then adopted to investigate
a problem of an isotropic spherical cavity, the inner surface of which is exposed to a time-
dependent varying heat and constrained. The system of governing differential equations has
been solved analytically by applying the technique of Laplace transform. To clarify the effects
of the fractional-order and viscoelastic parameters, we depicted our numerical calculations
in tables and figures. Finally, the results obtained are discussed in detail and also confirmed
with those in the previous literature.
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K Thermal conductivity
ρ Material density
Q Heat source
t The time
δi j Kronecker’s delta function
�E Induced electric field
τ q Phase lag of heat flux
τ θ Phase lag of temperature
eij Strain tensor
q Heat flux vector

1 Introduction

Generalized thermoelastic models have been progressed to eliminate the contradiction in the
infinite velocity of heat propagation concealed in the classical dynamical coupled thermoelas-
ticity theory [1]. In these generalized models, the basic equations contain thermal relaxation
times of hyperbolic type [2–5]. Furthermore, Tzou [6–8] investigated the dual-phase-lag heat
conduction theory by including two different phase delays correlating with the heat flow and
temperature gradient. Chandrasekharaiah [9] introduced a generalized model improved from
the heat conduction model established by Tzou [7, 8].

In the recent past, fractional calculus has been effectively applied in many fields to
solve problems in electronics, wave propagation, modeling, biology, chemistry, and viscosity
[10–15]. Alternative definitions and generalization of fractional derivatives were introduced
by [16–18]. Furthermore, several models of thermoelasticity have been investigated with
fractional derivatives by many researchers [19–24].

Recently, Abouelregal [25–27] created generalized and novel models of thermoelasticity
using fractional calculus. More recently, Abouelregal et al. [28] studied generalized thermoe-
lastic diffusion model with higher-order fractional time derivatives and four-phase-lags.

The present contribution aims to investigate a generalized two-fractional-parameter heat
conduction model of thermoviscoelasticity with multi-phase-lags. According to this model
and in limited cases, we can derive various classical, generalized, and fractional thermo-
viscoelasticity models (see Sect. 6). As an application of this model, we study an isotropic
homogeneous spherical cavity whose inner surface is subjected to a time-dependent vary-
ing heat and constrained. Moreover, the analytical solution for various physical fields, using
the Laplace transform procedure, is obtained. To clarify the effects of the fractional-order
and viscoelastic parameters, we depicted our numerical calculations in tables and figures.
Finally, the results obtained are discussed in detail and also confirmed with those in the
previous literature.

2 Fractional thermoviscoelastic model with multi-phase-lags

Here, we investigate an advanced thermoviscoelastic model which generalizes the Kelv-
in–Voigt model. In this case, the basic equations of motion, constitutive equations, strain,
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and displacement relations based on the theory of thermoviscoelastic for a homogeneous and
isotropic thermoviscoelastic solid are [29, 30]

σi j � 2μmei j + δi j
[
λmekk − γmθ

]

2ei j � u j,i + ui, j

μmui, j j + (λm + μm)u j,i j − γmθ,i + Fi � ρüi

(1)

The parameters μm and λm are assumed to be in the following generalized forms:

μm � μ0

(
1 + μδ

v
∂δ

∂tδ

)

λm � λ0

(
1 + λδ

v
∂δ

∂tδ

) (2)

where 0 < δ ≤ 1. Note that when δ � 1, the classical Kelvin–Voigt model is obtained.
Hence, the coupling modulus γm has the form

γm � γ0

(
1 + γ δ

v

∂δ

∂tδ

)
(3)

where γ0 � (3λ0 + 2μ0)αt and γv �
(
3λ0λδ

v+2μ0μδ
v

)
αt

γ0
.

On the other hand, the usual theory of heat conduction based on Fourier’s law for infinite
heat propagation speed is given by [1]

�q(x, t) � −K∇θ(x, t) (4)

Recently, a generalized dual-phase-lag model has been introduced by Tzou [8]:
(

1 + τq
∂

∂t
+

τ 2
q

2!

∂2

∂t2

)

�q � −K

(
1 + τθ

∂

∂t

)
∇θ (5)

Because there is a deficiency in the traditional Kelvin–Voigt model in describing some
physical phenomena of viscous materials in a manner that differs greatly from laboratory
experiments, several modifications have been proposed. Fractional-order models illustrate
the viscoelastic material behavior through corresponding fractional differential equations
that are physically appropriate.

In this work, we will introduce a new thermoelastic model of fractional heat conduction
law, where the generalized Fourier’s law is modified by using the concepts of fractional
Taylor’s series expansion proposed by Jumarie [23]. In this case, the time fractional dual-
phase-lag model is obtained as

(

1 +
τα

q

α!

∂α

∂tα
+

τ 2α
q

2α!

∂2α

∂t2α

)

�q � −K

(
1 +

τα
θ

α!

∂α

∂tα

)
∇θ (6)

where τq ≥ τθ > 0 and 0 < α ≤ 1.
We applied the Riemann–Liouville fractional integral to the previous equation which is

defined as a generalization of the convolution-type integral [13, 15]:

I α f (t) �
t∫

0

(t − ξ)α−1

Γ (α)
f (ξ)dξ (7)

where I α is the Riemann–Liouville integral operator of order α, Γ (α) is the Gamma function,
f (t) is a Lebesgue integrable function and t is the time. Hence, for absolutely continuous
function f (t), we have

lim
α→1

(
dα

dtα
f (t)

)
� f ′(t) (8)
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The energy balance equation with heat source is given by [28, 29]

ρCe
∂θ

∂t
+ γm T0

∂

∂t
(div�u) − ρQ � −div−→q (9)

where Ce denotes the specific heat at constant strain, γm is defined by Eq. (3) and Q is the
heat supply. Therefore, from Eqs. (6) and (9), we get

(

1 +
τα

q

α!

∂α

∂tα
+

τ 2α
q

2α!

∂2α

∂t2α

)[
ρCe

∂θ

∂t
+ γm T0

∂

∂t
(div�u) − ρQ

]
� K

(
1 +

τα
θ

α!

∂α

∂tα

)
∇2θ

(10)

This equation defines an advanced thermoviscoelastic fractional model with a dual-phase-
lag of fractional parameter α, and we denoted by FMVDPL. This model has widely used
in chemistry, biology, modeling and identification, electronics, wave propagation, and vis-
coelasticity [10–15].

3 An application to the constructed model

We are interested in studying an isotropic homogeneous spherical cavity of radius a whose
inner surface is exposed to a time-dependent varying heat and constrained. We also suppose
that there are no sources or body forces applied to the body. We will use the spherical system
of coordinates (r, ϑ, ϕ) as depicted in the following figure.

According to symmetry, all the studied functions are to be considered depending on the
distance r and the time t . The displacement vector has the components

ur � u(r, t), uϑ(r, t) � uϕ(r, t) � 0 (11)

The dilatation e has the form

e � 1

r2

∂
(
r2u

)

∂r
(12)

The constitutive equation is given by

σrr � 2μm
∂u

∂r
+ λme − γmθ (13)

σϑϑ � σϕϕ � 2μm
u

r
+ λme − γmθ (14)

Also, the equation of motion without external force Fi has the form

∂σrr

∂r
+

2

r
(σrr − σϑϑ) � ρ

∂2u

∂t2 (15)

From which together with Eqs. (13) and (14), the equation of motion has the form

(λm + 2μm)
∂e

∂r
− γm

∂θ

∂r
� ρ

∂2u

∂t2 (16)

Applying the operator 1
r2

∂
∂r

(
r2

)
to both sides of the above equation taking into account

Eq (12) and the expression of the Laplace’s operator ∇2 � ∂2

∂r2 + 2
r

∂
∂r � 1

r2
∂
∂r

(
r2 ∂

∂r

)
in the

spherical polar coordinates, we obtain

(λm + 2μm)∇2e − γm∇2θ � ρ
∂2e

∂t2 (17)
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In view of Eq. (10), the modified equation of heat conduction with fractional derivatives
and phase lags with Q � 0 can be written as

(

1 +
τα

q

α!

∂α

∂tα
+

τ 2α
q

2α!

∂2α

∂t2α

)[
ρCe

∂θ

∂t
+ γm T0

∂e

∂t

]
� K

(
1 +

τα
θ

α!

∂α

∂tα

)
∇2θ (18)

We introduce the following non-dimensional variables

{
r ′, u′} � c0η{x, u}, {t ′, μv ′, λv ′, τq ′, τθ ′

} � c2
0η

{
t, μv, λv, τq , τθ

}
;

θ ′ � γ0θ
λ0+2μ0

, σ ′i j � σi j
μ0

, c0 �
√

λ0+2μ0
ρ

, η � ρCe
K .

(19)

Under the above non-dimensional forms together with dropping the primes for conve-
nience, Eqs. (17), (18), and (13) become

(
1 + βv

∂δ

∂tδ

)
∇2e −

(
1 + γ δ

v

∂δ

∂tδ

)
∇2θ � ∂2e

∂t2 (20)
(

1 +
τα

q

α!

∂α

∂tα
+

τ 2α
q

2α!

∂2α

∂t2α

)[
∂θ

∂t
+ ε

(
1 + γ δ

v

∂δ

∂tδ

)
∂e

∂t

]
�

(
1 +

τα
θ

α!

∂α

∂tα

)
∇2θ (21)

σrr � 2
(

1 + μδ
v

∂δ

∂tδ

)
∂u
∂r +

(
β2 − 2

)(
1 + λδ

v
∂δ

∂tδ

)
e − β2

(
1 + γ δ

v
∂δ

∂tδ

)
θ

σϑϑ � 2
(

1 + μδ
v

∂δ

∂tδ

)
u
r +

(
β2 − 2

)(
1 + λδ

v
∂δ

∂tδ

)
e − β2

(
1 + γ δ

v
∂δ

∂tδ

)
θ

(22)

where

βv � λ0λ
δ
v + 2μ0μ

δ
v

λ0 + 2μ0
, β2 � λ0 + 2μ0

μ0
, ε � γ 2

0 T0

ρCe(λ0 + 2μ0)
. (23)

We have dropped the primes in Eqs. (20)–(23) for convenience and clarity of the problem.

4 The initial and boundary conditions

We suppose that the medium initially is at rest so that initial conditions of the problem have
the form:

e(r, t)|t�0 � ∂e(r,t)
∂t

∣∣∣
t�0

� 0

θ(r, t)|t�0 � ∂θ(r,t)
∂t

∣∣∣
t�0

� 0
(24)

We suppose that the boundary of the cavity r � a is constraint and is subjected to a
constant heat flux. So, the following boundary conditions hold

u(r, t) � 0, q(r, t) � q0 H(t) at r � a, (25)

where q0 is the dimensionless constant heat flux and H(t) is the Heaviside’s unit step function.
Due to Eq. (19), the boundary conditions have the form:

u(a, t) � 0,

q0

(

1 +
τα

q

α!

∂α

∂tα
+

τ 2α
q

2α!

∂2α

∂t2α

)

H(t) � −
(

1 +
τα
θ

α!

∂α

∂tα

)
∂θ(r, t)

∂r
, at r � a. (26)
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5 Transform solution

Applying the Laplace transform for Eqs. (20)–(23), taking into account the considered initial
conditions (24), we obtain:

∇2ē − q1∇2θ̄ � q2ē (27)

q3θ̄ + q4ē � q5∇2θ̄ . (28)

σrr � 2q6
dū
dr

+
(
β2 − 2

)
q7ē − β2q8θ̄

σϑϑ � 2q6
ū
r +

(
β2 − 2

)
q7ē − β2q8θ̄ ,

(29)

where

q1 �
(
1 + γ δ

v sδ
)

(
1 + βvsδ

) , q2 � s2
(
1 + βvsδ

) , q3 � s

(

1 +
τα

q

α!
sα +

τ 2α
q

2α!
s2α

)

q4 � ε
(
1 + γ δ

v sδ
)
q3, q5 �

(
1 +

τα
θ

α!
sα

)
, q6 � (

1 + μδ
vsδ

)
,

q7 � (
1 + λδ

vsδ
)
, q8 � (

1 + γ δ
v sδ

)
(30)

In view of Eqs. (27) and (28), we get
(∇4 − A∇2 + B

){
θ̄ , ē

} � 0, (31)

where

A � q3 + q1q4 + q2q5

q5
, B � q2q3

q5
. (32)

Introducing mi , (i � 1, 2) into Eq. (31), one get
(∇2 − m2

1

)(∇2 − m2
2

){
θ̄ , ē

} � 0, (33)

where m2
1 and m2

2 are the roots of the characteristic equation

m4 + Am2 − B � 0. (34)

Using the substitution f � ē√
r

and using the fact that the modified Bessel function K1/2

(z) � e−z
√

π
2√

z
, the solutions of Eq. (33) taking into account the regularity conditions that

θ̄ , ē → 0 as r → ∞ have the form

{
ē, θ̄

} �
2∑

i�1

{1, Li }Ai (s)
e−mi r

r

√
π

2mi
(35)

where Ai (i � 1, 2) are some parameters depending on the parameter s and Li is given by

Li � m2
i − q2

q1m2
i

. (36)

Using Eqs. (12) and (35), we get

ū � −
2∑

i�1

1

mi

(
1 +

1

mir

)
Ai (s)

e−mi r

r

√
π

2mi
(37)
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Now, from Eqs. (35), (36), and (29), we have

σrr �
2∑

i�1

[
2q6

(
1 + 2

mi r
+ 2

m2
i r2

)
+

(
β2 − 2

)
q7 − β2q8Li

]
Ai (s)

e−mi r

r

√
π

2mi

σϑϑ �
2∑

i�1

[
−2q6

(
1

mi r
+ 1

m2
i r2

)
+

(
β2 − 2

)
q7 − β2q8Li

]
Ai (s)

e−mi r

r

√
π

2mi
.

. (38)

Under Laplace transform, the boundary condition (26) becomes

ū(r, s) � 0,

dθ̄ (r, s)

dr
� −q0q3

s2q5
� −G(s), at r � a. (39)

Consequently, we get

2∑

i�1

(
1

mi a
+

1

m2
i a2

)

Ai (s)e
−mi a

√
π

2mi
� 0

2∑

i�1

Li Ai (s)

(
1

a2 +
mi

a

)
e−mi a

√
π

2mi
� q0q3

s2q5
(40)

Therefore, from the above system, we can determine the parameters A1, A2 in the Laplace
transform domain and hence the physical fields of the medium.

Finally, to have the solutions of the studied fields in the physical domain, we use a proper
and effective numerical method depending on a Fourier series expansion [31]. In this method,
any function in the Laplace domain can be reversed to the time domain as

M(r, t) � ect

t

(
1

2
M̄(r, c) + Re

m∑

n�1

M̄
(

r, c +
inπ

t

)
(−1)n

)

, (41)

where m is a finite number of terms, Re is the real part and i is imaginary number unit. For
faster convergence, numerous numerical experiments have shown that the value of c fulfills
the relation ct ∼� 4.7 [31].

6 Special cases of modified fractional thermoviscoelastic model

In Sect. 2, we investigated a generalized modified model of thermoviscoelasticity with dif-
ferent fractional orders. In limited cases, the proposed model is reduced to several previous
models in the presence and absence of fractional.

The obtained models are listed in the following table:
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Name of model Abbreviated name Conditions

1 Classical thermoelastic model CTE τq � τθ � 0,

μv � λv � 0

2 Lord–Shulman model LS τq > 0, α → 0, τθ � 0,

μv � λv � 0

3 Dual-phase-lag model DPL τq ≥ τθ > 0, α → 1,

μv � λv � 0

4 Classical thermoviscoelastic model VCTE τq � τθ � 0,

μv �� 0 �� λv, δ → 1

5 Viscoelastic Lord–Shulman model VLS τq > 0, α → 0, τθ � 0,

μv �� 0 �� λv, δ → 1

6 Viscoelastic dual-phase-lag model VDPL τq ≥ τθ > 0, α → 1,

μv �� 0 �� λv, δ → 1

7 Classical fractional thermoviscoelastic
model

MVCTE τq � τθ � 0,

μv �� 0 �� λv, 0 < δ < 1

8 Fractional thermoviscoelastic
Lord–Shulman model

MVLS τq > 0, α → 0, τθ � 0,

μv �� 0 �� λv, 0 < δ < 1

9 Fractional thermoviscoelastic
dual-phase-lag model

MVDPL
τq ≥ τθ > 0, α → 1,

μv �� 0 �� λv, 0 < δ < 1
,

10 Fractional thermoviscoelastic
Lord–Shulman model with one
fractional order

FMVLS τq > 0, 0 < α < 1, τθ � 0,

μv �� 0 �� λv, 0 < δ < 1

11 Fractional thermoviscoelastic
dual-phase-lag with two fractional
orders

FMVDPL τq ≥ τθ > 0, 0 < α < 1,

μv �� 0 �� λv, 0 < δ < 1

7 Numerical results and verification

The aim of this section is to describe and confirm results achieved in the previous sections.
Also, we present the numerical results. For the numerical calculations, we use the value of
the copper material at T0 � 293K as [32]

λ0 � 7.76 × 1010 kg m−1s−2, μ0 � 3.86 × 1010 kg m−1s−2, ε � 0.0168

ρ � 8954 kg m−3, K � 386 W m−1K−1, Ce � 3.381 J kg K−1.

The obtained results are accessible in Tables 1, 2, 3, and 4 and graphically in Figs. 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, and 13 at different values of the radius r (1 ≤ r ≤ 2) and different values
of the fractional parameter α at t � 0.12, when the dual-phase-lags τθ � 0.05 and τq � 0.07,
together with different values of the fractional δ(0 < δ ≤ 1), when the thermoviscoelastic
relaxation times μv � 0.2 and λv � 0.3. The Mathematica programming language is used
within our numerical calculations. Comparisons are accomplished with the expected results
predicted by all the models mentioned. Furthermore, the numerical calculations are prepared
for three directions.
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Fig. 1 Schematic diagram for spherical cavity

7.1 Comparison between different models of thermoviscoelasticity

This section is devoted to studying the distributions of the physical fields for the generalized
theory with dual-phase-lags (DPL) and the modified fractional thermoviscoelastic models
(MVCTE, MVLS, and MVDPL) with parameter δ, together with the generalized fractional
thermoviscoelastic models (FMVLS and FMVDPL) with parameters δ, α. The obtained
results are represented in Tables 1, 2, 3, and 4 and Figs. 1, 2, 3, and 4 for the field quantities
corresponding to different values of the radius r (1 ≤ r ≤ 2) at t � 0.12, when the dual-
phase-lags τθ � 0.05, τq � 0.07 with the fractional parameter α � 0.8, and μv � 0.2,
λv � 0.3 with δ � 0.9. These tables emphasize that the physical quantities depend not only
on the time t and the radius r , but also on the fractional parameters δ, α.

Table 1 presents the variation of temperature θ , for different models of thermoelasticity.
Through the table above, we note that the variations of temperature are observed to be sen-
sitive to the parameter α. The fractional models of thermoviscoelasticity (MVCTE, MVLS,
FMVLS, MDPL, MVDPL, FMVDPL) give significantly different results than the DPL model.
Furthermore, the above results related to the DPL model and its modified fractional models
are plotted in the following figure.

Figure 2 depicts that the variation of temperature θ in all the models (DPL, VDPL,
MVDPL, FMVDPL) decreases with increasing the radius r for 1 < r < 2. Also, we con-
clude that the maximum point of the temperature curve for the models (VDPL, MVDPL,
FMVDPL) is bigger than that for model (DPL). It is manifested from the figure that the
values of the temperature converge to zero when the radius r tends to 2, which agrees with
the boundary conditions.

The variation of the displacement u in the context of seven models of thermoelasticity is
obtained in Table 2. It was found that the values of the parameter α play a significant role in
changing the displacement value. As visible from Table 2, the displacement reaches minimum
value (u � 0) on the boundary at r � 1, which agrees with the boundary conditions. Finally,
the above results related to DPL model and its modified fractional models are schemed in
the following figure.

From Fig. 3, we observe that the variation of displacement u in all the models (DPL,
VDPL, MVDPL, and FMVDPL) decreases with increasing the radius r for 1 < r . Also, in
view of Fig. 3 we conclude that the amplitude of the displacement u for all the models is
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Fig. 2 The variation of temperature θ in different models related to DPL model

Fig. 3 The variation of displacement u in different models related to DPL model

bigger than that for the DPL model. Moreover, we find that the values of the displacement
converge to zero when r tends to 2 which agree with the boundary condition.

Table 3 and Fig. 4 display the variations of stress σrr against the radius for different values
of the fractional parameter α. Also, Fig. 4 emphasizes that the depth of the stress for the
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Fig. 4 The variation of the stress σrr in different models related to DPL model

models (VDPL, MVDPL, FMVDPL) is bigger than that for dual-phase-lags (DPL) model.
Furthermore, we observe that the values of the stress σrr converge to zero when r tends to 2.

Similarly, Table 4 and Fig. 5 describe the variations of stress σϕϕ against the radius with
different values of the fractional parameter α. Also, Fig. 5 shows that the depth of the stress
for the models [VDPL, MVDPL, FMVDPL] is bigger than that for dual-phase-lags (DPL)
model. Also, we see that the values of the stress σϕϕ converge to zero when r tends to 2.

7.2 The effect of the fractional parameters δ, α on the physical fields

This section is devoted to discuss how the fractional parameters δ, α act on the field variables.
The obtained results are represented in Figs. 6, 7, 8, and 9 for the field quantities corresponding
to different values of the radius r (1 ≤ r ≤ 2) at t � 0.12, and different values for the fractional
parameters δ, α, when the dual-phase-lags τθ � 0.05, τq � 0.07, together with μv � 0.2,
λv � 0.3. These figures emphasize that the physical quantities depend not only on the radius
r , but also on the fractional parameters δ, α.

It is evident from Figs. 6, 7, 8, and 9 that the different values to the fractional parameters
δ, α have clearly effect on the temperature, displacement, and the stress. Also, we observe
that the values of the physical quantities converge to zero when r tends to 2, which is in quite
good agreement with the regularity boundary conditions.

7.3 The effect of the time on the physical fields

This section is devoted to showing the effect of the time t on all the field variables. In this case,
we take the dual-phase-lags τθ � 0.05, τq � 0.07 when the fractional parameter α � 0.7
and μv � 0.2, λv � 0.3 with δ � 0.7. For a comparison of the results, the temperature, the
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Fig. 5 The variation of the stress σϕϕ in different models related to DPL model

Fig. 6 The variation of temperature θ with different values of the fractional parameters δ, α

displacement, and thermal stresses are presented in Figs. 10, 11, 12, and 13. It is seen from
the figures that these distributions are very sensitive with the time instant t. It is also clear
from Figs. 12 and 13 that the behavior of the thermal stresses is the most affected by the
change of time. The temperature also increases with the increase in time to a certain range
and then gradually decreases again with the passage of time.
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Fig. 7 The variation of displacement u with different values of the fractional parameters δ, α

Fig. 8 The variation of the stress σrr with different values of the fractional parameters δ, α

8 Conclusion

In the context of this paper, generalized thermoviscoelastic fractional model (FMVDPL)
with multi-phase-lag and parameter α is investigated. This model has widely used in chem-
istry, biology, modeling and identification, electronics, wave propagation, and viscoelasticity
[10–15]. In the limited cases, the proposed model reduces to various classical, generalized,
fractional thermoelasticity models (see Sect. 6). According to this model, the distributions
of the physical quantities for an isotropic homogeneous spherical cavity of radius a whose
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Fig. 9 The variation of the stress σϕϕ with different values of the fractional parameters δ,α

Fig. 10 The temperature θ with different times

inner surface is subjected to a time-dependent varying heat and constrained are discussed.
Numerical simulation results yield the following conclusions:

• The effects of the fractional parameter α, δ on all the physical fields under consideration
are very obvious.
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Fig. 11 The displacement u with different times

Fig. 12 The radial stress σrr with different times
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Fig. 13 The hoop stress σϑϑ with different times

• The results of our study differ from the generalized theory with dual-phase-lags (DPL) of
the phenomenon of limited velocities of the propagation of heat waves and the Kelvin–Voigt
model of thermoviscoelasticity.

• The obtained results are very useful for the material science researchers and material
designers who are working on the development of the thermoviscoelasticity and fractional
thermoviscoelasticity models.

• The technique introduced in this study is important in real-life engineering problems and
mathematical biology models according to the fractional time derivative.
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